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This article is concerned with the mechanical properties of dense, vertically
aligned carbon nanotube foams subject to one-dimensional compressive load-
ing. We develop a discrete model directly inspired by the micromechanical
response reported experimentally for CNT foams, where infinitesimal por-
tions of the tubes are represented by collections of uniform bi-stable springs.
Under cyclic loading, the given model predicts an initial elastic deformation,
a non-homogeneous buckling regime, and a densification response, accompa-
nied by a hysteretic unloading path. We compute the dynamic dissipation of
such a model through an analytic approach. The continuum limit of the mi-
croscopic spring chain defines a mesoscopic dissipative element (micro-meso
transition), which represents a finite portion of the foam thickness. An upper
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Graphical abstract

(movie)

Axial strain localization in a mesoscopic chain of five bistable
springs. The spring collapse mimics the local kinking of com-
pressed carbon nanotubes.
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Predicted stress-strain response (solid line) at the macroscopic
scale, reproducing the experimental behavior of a real CNT
foam (dashed line).
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Research highlights

• Axial strain localization in microscopic bistable spring chains mimics kink-
ing of compressed carbon nanotube arrays. • Infinitesimal viscous events at
the microscale induce time-independent hysteresis at the mesoscale. • Multi-
scale mechanical modeling of CNT foams is obtained through an information-
passing approach. • Available experimental results on compressed CNT
foams are reproduced with excellent agreement.
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scale model formed by a chain of nonuniform mesoscopic springs is employed
to describe the entire CNT foam. A numerical approximation illustrates the
main features of the proposed multiscale approach. Available experimental
results on the compressive response of CNT foams are fitted with excellent
agreement.

Key words: Carbon nanotube foams, bi-stable springs, multiscale
behavior, strain localization, hysteresis

1. Introduction

Since their discovery (Radushkevich and Lukyanovich, 1952; Oberlin et
al., 1976; Iijima et al., 1995), carbon nanotubes (CNTs) have been widely
studied for the understanding of different aspects of their chemical, electri-
cal and mechanical responses. Because of their unique properties and their
multiscale nature, forests of vertically aligned carpets of CNTs have been
proposed for a variety of applications (Gjerde et al., 1991; Veedu et al., 2006;
Daraio et al., 2004b; Majumder et al., 2005; Maheshwari and Saraf, 2008).
The mechanical response of individual nanotubes under axial and radial de-
formation, and their bending/buckling modes, have been studied extensively
using experimental, theoretical and molecular-dynamics analysis (Iijima et
al., 1995; Yakobson et al., 1996; Falvo et al., 1997; Belytschko et al., 2002;
Arroyo and Belytschko, 2003; Pantano et al., 2004; Cao and Chen, 2006).
The elastic modulus E of individual carbon nanotubes has been reported
to be very high: ∼ 1 TPa (Pantano et al., 2004). However in experiments
this value can vary widely, depending on the number of defects, the CNT
microstructure and the synthesis method followed.

The study of the mechanical properties of CNTs was later extended to
bundles of nanotubes under pressure (Chesnokov et al., 1999; Peters et al.,
2000; Chan et al., 2003; Liu et al., 2005; Qi et al., 2003) and to CNT forests
under nanoindentation (Mesarovic et al., 2007). The study of thin structural
foams (Gibson and Ashby, 1998) for cushioning (Zhang et al., 2009), energy
dissipation (Teo et al., 2007) and protection (Liu et al., 2008) has recently
received increasing attention for several practical applications, including mit-
igation of explosive loading (Nesterenko, 2001). Nanotube based films have
been reported as an excellent alternative to regular foams, exhibiting a super-
compressible foam-like behavior under compressive cycling loads (Suhr et al.,
2007; Teo et al., 2007; Tao et al., 2008; Deck et al., 2007; Cao et al., 2005).
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Investigations on the dynamic response of foam-like forests of CNTs under
dynamic ball impacts have also been performed (Daraio et al., 2004b; Daraio
et al., 2004b; Daraio et al., 2006; Misra et al., 2009). Results show a strongly
nonlinear response that appears to be very suitable for energy-absorbing lay-
ered materials in noise and shock wave mitigation and as nonlinear springs
for assembling nonlinear acoustic crystals. The CNT forests’ response was
also found to be strongly dependent on the forests’ microstructure (height,
density, alignment, etc.) and growth method. In certain cases the possi-
ble presence of plastic deformation and fracturing of the tubes was reported
(Daraio et al., 2004b).

Mechanical models consisting of chains of identical bi-stable springs have
been extensively studied by several authors, since the can describe a se-
ries of relevant nonlinear material behaviors (e.g., phase transformations,
reversible pseudo-plasticity, hysteresis, fracture), through the interplay be-
tween macroscopic and microscopic length scales (refer e.g. to Ortiz, 1999;
Puglisi and Truskinovsky, 2000, 2002, 2005). It is well known that such sys-
tems exhibit a ‘bumpy’ multi-well energy landscape, allowing for multiple
metastable equilibria (cf., e.g., Blesgen, 2007; Braides and Cicalese, 2007;
Charlotte and Truskinovsky, 2002, 2008; Ortiz, 1999; Puglisi and Truski-
novsky, 2000, 2002). In particular, Pampolini and Del Piero (2008) have
recently found that they well describe the hysteretic response of open-cell
polyurethane foams under confined compression tests.

In this article, we present a phenomenological model of the mechani-
cal response of carbon nanotube foams under compressive loading, which
is inspired by some distinctive features of the micromechanical response re-
ported earlier (cf., e.g., Cao et al., 2005; Zbib et al., 2008; Misra et al., 2009;
Hutchens et al., 2010). The given model makes use of multiscale chains of
lumped masses connected by nonlinear springs. It captures the ‘three-phase’
compressive deformation response of CNT forests shown by a number of ex-
perimental studies. The compressive deformation response is characterized
by an initial elastic deformation, a non-homogeneous buckling (or plateau)
regime, often featuring a sawtooth-like profile, and a densification phase.
This three-phase response, which is common for cellular materials (Gibson
and Ashby, 1998), is usually accompanied by marked hysteresis and strain
localization in CNT structures. We show in Section 3 that a series of bistable
elastic springs (Fig. 1) described by the potential in Eq. (1) exhibits a simi-
lar stress-strain response (Fig. 6), and through-the-thickness localization of
the axial deformation (Fig. 7). The latter effect mimics the snap-buckling
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events observed through Scanning Electron Microscope (SEM) in real CNT
arrays (cf. Fig. 2 of Cao et al., 2005; Fig. 3 of Hutchens et al., 2010). Such
a model therefore appears to be effective in describing the microstructure
rearrangements taking place in compressed CNT foams, within a simple 1D
framework.

We focus on the time-independent component of the hysteresis associated
with the compressive loading/unloading of CNT foams, which is essentially
due to effects such as friction, entanglement and electrostatic interaction be-
tween individual and bundles of carbon nanotubes (Suhr et al., 2007; Teo
et al., 2007; Tao et al., 2008; Deck et al., 2007; Misra et al., 2009; Cao et
al., 2005). The macroscopic hysteresis is described as a rate-independent
phenomenon induced by the succession of infinitesimal viscous events at the
microscopic scale (Puglisi and Truskinovsky, 2005). As a result, the me-
chanical model presented in this work does not account for viscosity or other
rate-dependent effects at the macroscopic scale, which we address to future
work.

Most of the available studies on bistable spring chains consider only two
spatial-temporal micro-macro scales. The formulation adopted in the present
study instead introduces three different time-space scales: a ‘microscopic’
scale (of the order of nanometers), which is associated with the individual
bi-stable springs and an infinitesimal portion of the total foam thickness Ltot;
a ‘mesoscopic scale’ (of the order of micrometers), corresponding to the limit
of an infinite series of microscopic springs and representing a finite portion
of Ltot; and a ‘macroscopic’ scale (of the order of millimeters), describing
the entire foam. We start with the derivation of a discrete 1D model at
the microscopic level, showing N + 1 particles having nearest neighbors con-
nected by N uniform nonlinear springs. The discrete spring potentials are
chosen to allow the study of softening and strain localization of the tubes.
This is discussed in Section 2. Here, we build on the concept of bi-stable
springs discussed by Puglisi and Truskinovsky in (Puglisi and Truskinovsky,
2000; Puglisi and Truskinovsky, 2002; Puglisi and Truskinovsky, 2005;). In
Section 3 we determine analytically the continuum limit N →∞ of the mi-
croscopic spring chain, by particularizing to the present case the analysis
presented in Puglisi and Truskinovsky (2005). Such a limit defines a meso-
scopic dissipative element. In Section 4 we then formulate an upper scale
model of the entire CNT foam through an information-passing approach,
by superimposing a finite number of mesoscopic dissipative springs with dif-
ferent mechanical properties. We account in this way for inhomogeneities
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induced by the CNT growth process, which several authors think be a lead-
ing cause of the discrete folding/buckling events described above (Cao et al.,
2005; Hutchens et al., 2010). The introduction of non-uniform mechanical
properties allows us to enrich the formulation given in Puglisi and Truski-
novsky (2000), Puglisi and Truskinovsky (2002), Puglisi and Truskinovsky
(2005), Pampolini and Del Piero, (2008) for bistable spring chains, modeling
macroscopic hardening, instead of a perfectly ‘plastic’ response. Hardening-
type post-buckling regimes are commonly observed in compression tests on
CNT foams (Cao et al., 2005; Misra et al., 2009). We present in Section 5
a numerical micro-meso convergence study, and the fitting of mesoscopic
model parameters to different available experimental data on compressed
CNT foams. We demonstrate that the proposed model and its numerical im-
plementation are capable of reproducing the physical behavior of real CNT
foams with excellent agreement. We end the article with a critical evaluation
and discussion of the results and an outlook.

2. The mechanical model at the microscopic scale

We model an infinitesimal portion of a CNT array as a collection of N+1
lumped masses m0, . . . ,mN piled up one over the other (with N > 2). In
this configuration, m0 is clamped at the bottom of the pile at the position
x0 = 0, whereas mN is on top at position xN = L > 0, referring to the
unstressed reference configuration (Fig. 1c). The nearest neighboring mass
points are connected by N nonlinear microscopic springs. We assume that
the reference configuration displays equal distances hN := L/N between the
masses, and denote the axial displacement of the mass mi (positive upward)
by ui

N (with u0
N = 0, see Fig. 1c). We set uN := {u0

N , ..., u
N
N}.

For the mechanical energy V i of the microscopic spring placed between
nearest neighbors mi−1 and mi, we assume the three-branch expression de-
fined by

V i(εi) =


V i

a (εi) = −ki
0[εi +ln(1−εi)], εi < εi

a,

V i
b (εi) = c1 + σi

aε
i + 1

2
ki

b(ε
i−εi

a)2, εi
a ≤ εi ≤ ε̄i

c,

V i
c (εi) = c2−ki

c[ε
i−εi

∗+ln(1−(εi−εi
∗))], ε̄i

c < εi,

(1)
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Figure 1: (Color online) (a) Schematic diagram of a vertically aligned CNTs foam, uni-
formly loaded in compression. (b) SEM of the as grown carbon nanotube film showing the
alignment and the microstructural layering due to the growth process (Deck and Vecchio,
2005). (c) Modeling of a portion of a CNT foam as a collection of microscopic mass-spring
elements.

with εi = εi − εi
0, where

εi = εi(uN) =
ui−1

N − ui
N

hN

(2)

is the strain measure associated with such a spring (positive in compression).
In (1), the quantity εi

0 ≥ 0 determines the value of εi corresponding to
the first minimum of V i (‘equilibrium’ or ‘initial’ strain); ki

0 > 0, ki
b < 0,

ki
c > 0, εi

a > 0 and εi
c ≥ εi

a are constitutive parameters (five independent
parameters); the constants c1 < 0 and c2 > 0 are such that V i

a (εi
a) = V i

b (εi
a),

V i
b (ε̄i

c) = V i
c (ε̄i

c); and it results
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εi
∗ = εi

c −
σi

a

ki
c + σi

a

, (3)

ε̄i
c =

εi
c (ki

c + σi
a)

ki
c + σi

c

+
(σi

c − σi
a) (ki

c + εi
ck

i
c + εi

cσ
i
a)

(ki
c + σi

a) (ki
c + σi

c)
, (4)

with

σi
a = ki

0

εi
a

1− εi
a

, σi
c = σi

a + ki
b(ε̄

i
c − εi

a). (5)

The relationship

σi(εi) = V i′ =



ki
0

εi

1−εi , εi < εi
a,

σi
a + ki

b(ε
i − εi

a), εi
a ≤ εi ≤ ε̄i

c,

ki
c(εi−εi

∗)
1−(εi−εi

∗)
, ε̄i

c < εi

(6)

defines the stress σi acting in the spring connecting mi−1 with mi.
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We deduce from (1) that V i owes the two-well profile shown in Fig. 2. Ac-
cordingly, the stress-stain relationship (6) is described by the non-monotone
profile depicted in Fig. 3. It is worth noting that the mechanical response
of the generic microscopic spring encompasses two stable phases, for εi < εi

a

(phase a) and εi > ε̄i
c (phase c), respectively; and an intermediate unstable

phase b for εi
a ≥ εi ≥ ε̄i

c (spinodal regime). For future use, we set

∆σi := σi
c − σi

a, ε̄i
a :=

εi
aσ

i
c

σi
a + εi

a ∆σi
(7)

and let σi
M denote the slope of the linear branch of the convex hull of V i

(Maxwell stress, see Fig. 3). We also convene to denote the value of εi where
σi = σi

M in phase a by εi
aM

, and the value of εi such that σi = σi
M in phase c

by εi
cM

. With reference to the generic spring, Equation (6)1 highlights that
ki

0 represents the elastic stiffness at zero stress in phase a (εi = 0). On the
other hand, Equation (6)2 points that ki

b represents the (constant) stiffness
in the spinodal phase b, while Equation (6)3 reveals that ki

c represents the
stiffness at zero stress in phase c (εi = εi

∗). We name ‘symmetric’ the case
with ki

c = ki
0 and ‘asymmetric’ the one with ki

c 6= ki
0. The meaning of the

other quantities appearing in Equations (1) - (7) is illustrated in Figs. 2 and
3.

3. Dynamic relaxation and hysteresis at the mesoscale

There are two fundamental characteristics reported experimentally in the
bulk compressive response of dense vertically aligned CNTs forests: (i) a
good recovery of deformation even at large compressive strains after a suf-
ficiently large recovery time (Cao et al., 2005; Misra et al., 2009); and (ii)
a strong hysteresis, observed in particular in as-grown foams, attributed to
several potential effects, including friction, entanglement and electrostatic
interaction between individual and bundles of carbon nanotubes (Suhr et al.,
2007; Teo et al., 2007; Tao et al., 2008; Deck et al., 2007; Misra et al., 2009;
Cao et al., 2005). In the present Section we will analyze such a dissipative
behavior, by studying a dynamic switching process at the microscopic scale
between the phases (a) and (c) described in Figs. 2 and 3. This is in line
with the ideas in Puglisi and Truskinovsky (2002), Puglisi and Truskinovsky
(2005). Following Puglisi and Truskinovsky (2005), we name a response of
the material plastic, if the strain εi of a single spring exceeds εi

0 + εi
a. For
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Figure 2: (Color online) Mechanical energy V i of the generic microscopic (bi-stable) spring.

a chain of N springs, this can be characterized by the occurrence of loading
and unloading stress plateaux. However, we notice that our analysis excludes
accumulation of permanent deformation, therefore the end point of one hys-
teresis cycle coincides with the start point of the next cycle. In this sense, the
present hysteresis model is time-independent. We will show in Section 5.2
that it is nevertheless capable of capturing a previously accumulated perma-
nent deformation (mechanical preconditioning), through suitable definition
of the initial strains εi

0.
Within the current Section, we rescale for simplicity L to unity, and

assume that V i is independent of the spatial position. Accordingly, we drop
the superscript i in front of the spring properties. This because we refer
the following analysis to a finite portion of the CNT foam, regarding such
a mesoscopic element as the limit for N → ∞ of a series of N identical
microscopic springs. Furthermore, we restrict our attention to the case with
kc = k0 (”symmetric” model), and ε0 = 0. For the present analysis we
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Figure 3: (Color online) Stress σi versus strain εi relationship in the generic microscopic
spring.

require a certain smallness condition on εa and εc relating to strong pinning
that disappears in the limit N → ∞, see Puglisi and Truskinovsky (2002).
We define the mechanical energy of the foam as

EN(uN) =
1

N

N∑
i=1

V (εi(uN)) (8)

with the effective potential

V (ε) =


−k0[ε+ ln(1− ε)] if ε < εa,

c1 + σaε+ kb

2
(ε− εa)2 if εa ≤ ε ≤ εc,

c2 − k0[ε− ε∗ + ln(1− ε+ ε∗)] if εc < ε.

Let σ be the given total stress, coinciding at equilibrium with the stress in
each individual spring (σ = σ1 = . . . = σN). The total average strain is
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simply

ε(uN) :=
1

N

N∑
i=1

εi(uN).

We model plasticity by the gradient flow equations (Puglisi and Truski-
novsky, 2005)

ν ε̇i(uN) = −∂ΦN

∂εi
(ε1(uN), . . . , εN(uN)) (9)

with the total energy

ΦN(ε1, . . . , εN) :=
1

N

N∑
i=1

[
V (εi)− σεi

]
.

The evolution equation (9) lets εi evolve towards local minimizers of ΦN .
We are interested in the limit ν → 0 which amounts to infinitely fast evolution
such that ε(uN) attains a local minimizer of ΦN . First we construct the
equilibrium points. Inside the i-th spring element, the strain must satisfy
the condition V ′(εi) = σ. For given total stress σ, there are at most the
three local minimizers

ε̆a =
σ

k0 + σ
, ε̆b =

σ − σa

kb

+ εa, ε̆c =
σ(1 + ε∗) + k0ε∗

k0 + σ
= ε̆a + ε∗.

Let p, q, 1 − p − q denote the phase fractions of the minimizers a, b, and c,
which corresponds to having Np, Nq, N(1−p− q) springs in phase a, b, and
c, respectively.

As ε 7→ V (ε) is concave in Regime b, if the elongation of a spring in the
local minimum ε̆b is altered by an arbitrarily small perturbation, it will move
(according to the sign of the perturbation) to either ε̆a or ε̆c. In consequence,
any system of N springs with q 6= 0 is unstable and we may in the following
restrict to the case q = 0.

From ε = pε̆a +(1−p)ε̆c we compute the equilibrium stress-strain relation
to be

σ(ε) =
k0(ε− εp)

1− (ε− εp)
(10)

with
εp := (1− p)ε∗

that can in a natural way be identified with the plastic strain. From (10) we
see that σ only depends on the elastic strain εel := ε− εp.
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For the energy of the equilibrium configuration with Np springs in phase a
we find

Êp(ε) = −k0

[ σ(ε)

k0 + σ(ε)
+ ln

( k0

k0 + σ(ε)

)]
+ (1− p)c2

= −k0

[
(ε− εp) + ln(1− (ε− εp))

]
+ (1− p)c2.

Note that Êp has a finite number of local minimizers (depending on the
remaining parameter p). As explained in Puglisi and Truskinovsky (2005),
the switching takes place between branches that differ in exactly one element
in the phase state and the succession of N such steps describes the transition
from one homogeneous state to the next. Each of these steps can be thought
of as the combination of an elastic part and a plastic part.

The stress-strain curve of the foam follows a sawtooth pattern as illus-
trated in Fig. 4 (left). We denote by Āi the end point of the i-th branch.
The Āi are the final states of the elastic steps (B̄i → Āi+1) where the system
remains on the same metastable branch as long as possible. The plastic steps
(Āi → B̄i) are characterized by that the total strain is fixed and the system
switches between metastable branches that are neighbors ([Np] = 1, and [Q]
generically denotes the jump of a quantity Q). These considerations lead to
the representation

Āi =
(
εĀi

,
k0εa

1− εa

)
, B̄i =

(
εĀi

,
k0(εa − ε∗/N)

1 + ε∗/N − εa

)
, 1 ≤ i ≤ N

in the (ε, σ)-diagram, where

εĀi
:= εa +

i− 1

N
ε∗. (11)

So we can compute that a plastic step is characterized by

[ε] = 0, [Np] = 1, [σ] = − k0ε∗
N(1− εa)(1 + ε∗/N − εa)

,

whereas an elastic step fulfills

[ε] =
ε∗
N
, [Np] = 0, [σ] = +

k0ε∗
N(1− εa)(1 + ε∗/N − εa)

.
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and limit response for N →∞ (right).

The evolution equation (9) lets εi evolve towards local minimizers of ΦN .
Now we want to look at the energetics of the plastic and the elastic regime.
For an elastic step we have the energy difference

∆ÊN = k0

[
ln(1− εa)− ln(1− εa + ε∗/N)

]
+
k0ε∗ + c2

N
.

In the same spirit, we calculate that for a system with N ≥ 1 springs, the
plastic dissipation is

DN := k0

[
ln(1− εa + ε∗/N)− ln(1− εa)

]
− c2 + k0ε∗

N

= k0
1

ξN

ε∗
N
− c2 + k0ε∗

N
for a ξN ∈ (1− εa, 1− εa + ε∗/N). (12)

Clearly, ξN → 1− εa for N →∞.
In one hysteresis cycle, there are N loading steps and N steps when the

system is unloaded, so we have totally 2N steps that dissipate energy. The
total dissipated energy D in a cycle becomes in the limit N →∞

D = lim
N→∞

2NDN =
∣∣∣2k0ε∗εa

1− εa

− 2c2

∣∣∣. (13)
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We put the modulus here to ensure that the dissipation is positive.
The limit stress-stain pattern for N → ∞ is shown in Fig 4. It corre-

sponds to a ”perfectly plastic” behavior with stress plateaux at σ = σa =
k0εa/(1− εa) (loading plateau) and σ = σc = σa + ∆σ (unloading plateau).
We emphasize again that this ansatz only works for rate-independent plas-
ticity where the energy only depends on start point and end point of the
evolution, but not on the evolution path itself. The limit dissipation (13)
equals the area enclosed by the limit stress-strain response. As already ob-
served, we confer the behavior shown in Fig. 4 (right) to a mesoscopic spring
element, which represents a finite portion of the CNT foam thickness.

4. Multiscale numerical modeling

We formulate in the present Section a multiscale numerical model of a
nonlinear mass-spring chain, where each spring represents either a micro-
scopic bistable element (cf. Section 2), or a mesoscopic dissipative element
of the kind introduced in the previous Section. We introduce two different
time scales: an external (slow) time τ ∈ [τ0, τ1] ruling an evolution law of the
applied boundary conditions, and an internal (fast) time t ∈ [t0, t1] governing
the dynamic relaxation of the system for fixed τ . Depending on the adopted
model for the individual springs, we may have the t corresponds to the mi-
croscopic timescale (i.e. to the time ruling the microscopic behavior) and τ
to the mesoscopic time (micro-meso transition), or, alternatively, that t cor-
responds to the mesocopic time and τ to the macroscopic time (meso-macro
transition).

Let us denote a prescribed displacement time-history of the topmost mass
mN by δ(τ). We introduce a discretization {τ1, . . . , τM} of the loading interval
[τ0, τ1] and compute the system response for fixed τ = τk and δ̄ = δ(τk),
through integration with respect to t of the evolution equations

mi ¨̂ui
N + γi ˙̂ui

N = σi+1 − σi, i = 1, . . . , N, (14)

which generalize the gradient flow equations (9) (Puglisi and Truskinovsky,
2005). In (14), ûi

N = ûi
N(t) denote transient displacement histories of the

masses m0, . . . ,mN at fixed τ ; σi indicates the current stress in the ith spring
(it is understood that it results σi = 0 for i > N); and γ1, . . . , γN denote
damping coefficients.

Since we are only interested in the final equilibrium configuration of the
transient internal motion, we ‘overdamp’ such a motion down, by introducing
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fictitious masses and damping factors in (14). In detail, we set the integration
time step ∆t to unity, and introduce fictitious masses mi = αki ∆t2, with
ki = hN(V i + V i+1)′′ and α ≥ 100. This ensures ∆t ≤ 0.1

√
mi/ki (i =

1, ..., N) (Fraternali et al., 2009). Moreover, we let the generic γi be equal to
the ‘critical’ damping defined as follows

γi = 2
√
mi ki (15)

The equations of motion (14) are associated with the initial conditions

ûi
N(t = t0) = (ui

N)(k−1), i = 0, . . . , N − 1; ûN
N(t = t0) = δ̄

˙̂ui
N(t = t0) = 0, i = 0, . . . , N (16)

where (ui
N)(k−1) (i = 1, . . . , N) are the displacements of the masses at the

external time τ = τk−1. Equations (14), (16) are numerically integrated
through a fourth-order Runge-Kutta integration scheme, up to an internal
time t1 such that it results |σi+1 − σi| ≤ 10−6|σN | for all i ∈ {1, . . . , N − 1}.
When the internal equilibrium is reached, we set k ← k + 1 and re-iterate
problem (14).

For the micro-meso convergence study of Section 5.1, we consider the
stress-strain law described by Equation (6) and illustrated in Fig. 3, for each
microscopic spring. For the simulation of compression tests on real CNT
foams, we instead adopt nonuniform chains of mesoscopic spring character-
ized by a suitable numerical regularization of the stress-strain pattern shown
in Fig. 4. In detail, we introduce a ‘hardening’ type regularization consisting
of the following stress-strain law (Fig. 5)

σi =



σ(a,i) =
ki
0εi

(1−εi)
, (εi < εi

a) and (flag(k−1) 6= c),

σ(d,i) = σi
a + ki

h+(εi−εi
a), (εi

a ≤ εi ≤ ε̂i
c) and (flag(k−1) = a),

σ(e,i) = σi
a + ∆σi + ki

h−(εi−ε̄i
c), (ε̂i

a ≤ εi ≤ ε̄i
c) and (flag(k−1) = c),

σ(c,i) = ki
c(εi−εi

∗)
1−(εi−εi

∗)
, (ε̄i

c < εi) and (flag(k−1) 6= a),

(17)
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where, for each τ = τk (k = 1, . . . ,M), we set

flag(k) =



a, (εi < εi
a) and (flag(k−1) 6= c),

c, (ε̄i
c < εi) and (flag(k−1) 6= a),

flag(k−1), ((εi
a ≤ εi ≤ ε̂i

c) and (flag(k−1) = a)),

or ((ε̂i
a ≤ εi ≤ ε̄i

c) and (flag(k−1) = c)).

(18)

The quantities ki
0, ∆σi, ki

c, ε
a
i , ε

i
c, k

i
h+ and ki

h− in (17) are constitutive
parameters (seven independent parameters), while ε̂i

a and ε̂i
c are computed

by solving for εi the equations

σ(a,i) = σ(e,i), σ(c,i) = σ(d,i) (19)

respectively. One gets back to a perfectly plastic mesoscopic response by
setting the regularization (‘hardening’) parameters ki

h+ and ki
h− equal to

zero. The quantities εi are given by (2) under the replacement of ui
N with

ûi
N .
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Figure 5: (Color online) Hardening-type regularization of the mesoscopic response.
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5. Applications

The present Section deals with applications of the above numerical model
to a convergence study and the fitting of laboratory tests on the cyclic com-
pression of CNT foams. In the first case, series of springs with constitutive
equations (6) were considered (model # 1: micro-meso transition), letting
the total number of springs of the system increase progressively (micro-meso
transition). In the second case, spring chains with constitutive equations (17)
were instead examined (model # 2: meso-macro transition). The optimal fit
of available experimental stress-strain curves was performed by playing with
the constitutive parameters of equations (17) and the number of mesoscopic
springs N . Depending on the value of N , a significant number of parameters
may need to be identified. This lead us to employ a fitting procedure based
on genetic algorithms, which have been proved to be well-suited for multi-
modal non-convex optimization (cf. e.g. El Sayed et al., 2008; Fraternali et
al., 2009). In all the examined examples, we name global strain the quantity
ε = (L− `)/L, ` denoting the total deformed length of the chain.

5.1. Convergence study and micromechanics of ‘plastic’ steps

We examined uniform chains with fixed length L = 860 µm and increasing
number of microscopic springs N , subject to a complete loading-unloading
compression cycle up to a global strain ε = 0.85 (as in the experiments ex-
amined in Section 5.2.2). We employed model #1 with kc = k0 (‘symmetric’
case); ε0 = 0; and the material properties listed in Tab. 1 of the Appendix for
all the springs. Fig. 6 shows the numerically computed dissipation DN versus
strain ε and stress σ versus ε responses of such a model for different numbers
of springs (N = 5, 10, 15 and 50). The σ-ε plot in Fig. 6 highlights that
the global stress-strain response alternates elastic steps and ‘plastic’ jumps
of σ at constant ε, oscillating converging to the ‘perfectly plastic’ mesoscopic
behavior shown in Fig. 4. The DN -ε plot in Fig. 6 instead shows that DN

converges to the limit dissipation defined in equation (13). The above results
therefore confirms the theoretical predictions of Section 3. Selected equilib-
rium configurations and a deformation animation (online version only) of the
model with N = 5 springs are given in Fig. 7. One can easily recognize the
configurations corresponding to the plastic steps of the microscopic chain,
displaying the snap of a single spring and the simultaneous elastic rearrange-
ment of the remaining springs (cf., e.g., configurations 3 and 5 from the left).
It is worth noting that the ordering of the springs is of no relevance in the
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present case. Therefore, the succession of the spring snaps can indifferently
proceed from the bottom to the top of the chain, as shown in Fig. 7, from
top to bottom, or in random sequence. In a real-world chain of springs, the
parameters as k0 or εa would never be perfectly identical and the small devi-
ations of the different springs would break the symmetry and determine the
ordering when the springs snap.

5.2. Fitting of experimental results on compressed CNT foams

We examined the experimental results of a cyclic compression test on a
doubly anchored CNT foam run at the Graduate Aerospace Laboratories of
the California Institute of Technology, and the results given in Cao et al.
(2005) on the cyclic compression of a foam-like CNT film. We fit model
# 2 both to he first loading/unloading cycle of the examined foams, and
to selected cycles following an initial mechanical preconditioning, employing
the Breeder Genetic Algorithm (BGA) presented in the Appendix. For the
fit of the first cycles we assumed εi

0 = 0 in each spring, while for the cycles
following the foam preconditioning we set εi

0 = ε0 in each spring, ε0 being the
macroscopic (permanent or transient) strain observed at zero stress at the end
of the previous loading cycle. For the cycles following the preconditioning,
we considered two different fitting models: one accounting for hysteresis
(numerical (1): ∆σi < 0 in each mesoscopic spring), and the other without
hysteresis (numerical (2): ∆σi = 0 in each mesoscopic spring). Since all the
adopted fitting models account for macroscopic time-independent behavior
(cf. Sect. 3), our fitting results are independent of the strain rate actually
applied in the experiments.

5.2.1. Compression tests on a doubly anchored CNT foam

We performed cyclic compression tests on vertically aligned multi-walled
carbon nanotube forests (800µm in length with sample area∼ 14mm2) grown
by chemical vapor deposition (CVD) using ferrocene and toluene as precur-
sors. The average diameter of the as-grown CNTs was∼ 50nm. The as-grown
CNTs foams were partially anchored between two polymer layers to provide
structural support and sample transportability.

For anchoring the CNT foams on a substrate we spin-coated polydimethyl-
siloxane (PDMS) on top of a glass slide at 800 RPM to get 50−100µm thick
films. Before curing the polymer we partially embedded the CNT-foams
at 80◦C for 1 hour. After curing, the carbon nanotubes protruding from
the substrate showed excellent vertical alignment with an average height of
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∼ 750µm. The process was repeated turning the sample upside down to
obtain a ‘doubly anchored’ system (i.e. sandwich structure with polymer on
both sides and the CNT foam in the middle). Typical experimental results
obtained from cyclic compression tests are shown in Fig. 8 (top).

We separately fit the first and the fourth stress-strain cycles shown in
Fig. 8 to model # 2, considering the general ‘asymmetric’ case with ki

c 6= ki
0

(i = 0, . . . , N − 1) and a chain with N = 4 springs. For the fourth cycle we
accounted for an initial strain ε0 = 0.20, which approximatively corresponds
to the strain measured at zero stress at the end of the third loading cycle
(Fig. 8, top). The best fit parameters obtained through BGA optimization
are given in Tab. 2 of the Appendix. A comparison between best-fit and ex-
perimental overall stress-strain curves is shown in Fig. 8 (center and bottom).
One observes that the non-uniform dissipative mass-spring model is able to
capture the real hysteretical behavior of the examined CNT foam, both at
their pristine state (first cycle) and after mechanical preconditioning (fourth
cycle), through a multi-plateaux overall stress-strain profile. In particular,
Fig. 8-bottom and Tab. 2 of the Appendix show that the response after
preconditioning can be roughly described through a suitable non-dissipative
model.

5.2.2. Compression tests on a foamlike CNT film

We fit a cyclic compression test given in Cao et al. (2005) for a CNT foam-
like film with thickness L = 860 µm. The analyzed experiment performed
1000 loading/unloading cycles up to a global strain ε = 0.85 (cf. Fig. 3B of
Cao et al., 2005 and Fig. 3 of the Appendix). The fitting of the ‘symmet-
ric’ formulation of model # 2 (ki

c = ki
0 in each spring) to the first cycle is

presented in the Appendix. A dramatic improvement of the fitting ability
of model # 2 was obtained by considering the ‘asymmetric’ case (ki

c 6= ki
0).

As shown in Tab. 4 of the Appendix, we were indeed able to reduce the
fitting fitness to 0.808 MPa by using a BGA-optimized ”asymmetric” mul-
tiscale model with 10 springs. Such a fitness value is markedly lower than
that obtained for the corresponding ”symmetric” case (1.462 MPa, cf. Tab.
3 of the the Appendix). We were able to optimally fit also the 1000th cycle
of the examined experiment to the ‘asymmetric’ model, obtaining a fitting
fitness of 0.444 MPa through the BGA-optimized 5 spring model described in
Tab. 4 of the Appendix. The excellent match between numerical and exper-
imental results for the present case is illustrated by Fig. 9, which compares
predicted and measured overall stress-strain responses. For the first cycle
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we observe that the numerical multi-plateaux response closely approaches
the continuous experimental recording as the number of mesoscopic springs
increases from 5 to 10 (Fig. 9, top and center). Regarding the 1000th cycle,
we assumed ε0 = 0.14 as suggested in Cao et al. (2005). Fig. 9, bottom
shows that the experimental stress-strain profile corresponding to the 1000th
cycle is already excellently approximated by a 5 spring model with dissipa-
tion (numerical (1)), and roughly described by an analogous model without
dissipation (numerical (2)). One observes from Tabs. 3 and 4 of the Ap-
pendix that the average value of the stiffness ki

0, among all the springs, is
approximatively equal to the elastic modulus estimated by Cao et al. (2005)
for the present CNT foam (≈ 50 MPa).

6. Discussion and Outlook

In this article we derived a mechanical model describing the behavior
of CNT foams under uniform compression, through the concept of bi-stable
springs presented in Puglisi and Truskinovsky (2000, 2002, 2005), which has
been recently applied to open-cell polyurethane foams (Pampolini and Del
Piero, 2008).

The proposed model differs from other bi-stable mass-spring models avail-
able in the literature (refer e.g. to Blesgen, 2007; Braides and Cicalese, 2007;
Charlotte and Truskinovsky, 2002, 2008; Ortiz, 1999; Puglisi and Truski-
novsky, 2000, 2002, 2005, and references therein), due to the presence of
an intermediate, mesoscopic scale, placed in between the microscopic scale
of the bi-stable springs, and the macroscopic scale of the entire structure.
The microscopic scale aims to describe the dynamic snapping of the carbon
nanotubes, due to local buckling (Cao et al., 2005; Zbib et al., 2008; Misra
et al., 2009; Hutchens et al., 2010), while the mesoscopic scale is intended
to describe the time-independent hysteretic behavior of finite portions of the
CNT foam. The latter typically follows from kinking, entanglement of the
tubes, friction and other microscopic dissipative effects (Suhr et al., 2007;
Teo et al., 2007; Tao et al., 2008; Deck et al., 2007; Misra et al., 2009).

Another relevant difference between the present model and most of the
available bi-stable mass-spring models consists of the fact that the current
model accounts for nonuniform mesoscopic spring properties, while other
models usually consider uniform chains of bi-stable springs (see e.g. Puglisi
and Truskinovsky, 2000, 2002; Pampolini and Del Piero, 2008). Such a me-
chanical inhomogeneity allows us to account for hardening of the macroscopic
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response in the post-buckling range (Cao et al., 2005; Misra et al., 2009).
The numerical results given in Section 5 demonstrated that our methods

are capable of recovering available experimental results on the compression of
CNT foams with excellent agreement. We fitted the parameters of the meso-
scopic springs through a Breeder Genetic Algorithm, which is well suited
for global non-convex optimization. The fitting of experimental stress-strain
curves allowed us to recognize that non-uniform dissipative mass-spring mod-
els are well suited to capture the main features of the real compressive re-
sponse of CNT foams, and specifically strain localization due to CNT kinking
and time-independent hysteresis. The latter was found to be relevant during
loading/unloading from the pristine state, and progressively decaying after
mechanical preconditioning. By setting to zero the dissipation of the model,
we were led to obtain a rough, non-linearly elastic approximation of the ex-
amined experimental behaviors after preconditioning.

The distinctive features of the multiscale model presented in this work
highlight its potential use to describe the mechanical behavior of multilay-
ered systems composed of alternating CNT foams and anchoring polymeric
films (Misra et al., 2009). We will address such an extension of the current
model in future work. Other future directions of the present research might
regard the description of permanent deformation through fatigue or damage
mechanisms; the inclusion of rate-dependent dissipative effects at the macro-
scopic scale; and the modeling of long-range interactions mimicking van der
Waals forces.
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Appendix. Supplementary data

Supplementary data associated with Section 5 of this article can be found
in the online version.
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Figure 6: (Color online) Response of uniform chains of microscopic bi-stable springs with
properties shown in Tab. 1 of the Appendix: DN dissipation (kJ/m2); σ global stress
(MPa); ε global strain (filled marks: loading; unfilled marks: unloading).
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(animation)

Figure 7: (Color online) Selected equilibrium configurations (left) and deformation ani-
mation (right - online version only) of the model described in Tab. 1 of the Appendix, for
N = 5.
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Figure 8: (Color online) Fitting of compression tests on a doubly anchored CNT foam
(top) to non-uniform ‘asymmetric’ spring models (properties in Tab. 2 of the Appendix).

29



1st cycle, 5 springs

0 0.2 0.4 0.6 0.8
Ε0

5

10

15

20

25

Σ@MPaD

numerical

experimental

1st cycle, 10 springs

0 0.2 0.4 0.6 0.8
Ε0

5

10

15

20

25

Σ@MPaD

numerical

experimental

1000th cycle, 5 springs, Ε0=0.14

0 0.2 0.4 0.6 0.8
Ε-Ε00

5

10

15

20

25

Σ@MPaD

numerical H1L

experimental

1000th cycle, 5 springs, Ε0=0.14

0 0.2 0.4 0.6 0.8
Ε-Ε00

5

10

15

20

25

Σ@MPaD

numerical H2L

experimental

Figure 9: (Color online) Fitting of experimental compressive stress-strain curves of CNT
foams (Cao et al., 2005) to non-uniform ‘asymmetric’ spring models (properties in Tab. 4
of the Appendix).
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Addendum to Section 5. Applications

Section 5.1. Convergence study and micromechanics of ‘plastic’ steps

The material properties used for the convergence study presented in Sec-
tion 5.1 of the paper are given in Tab. 1 .

k0 [MPa] ∆σ/σa εa εc

50.00 −0.7 0.25 0.77

Table 1: Mechanical properties of uniform chains of microscopic bi-stable springs employed
in Section 5.1 of the paper.

Section 5.2. Fitting of experimental results on compressed CNT foams

The fits presented in Section 5.2 of the paper consider single loading-
unloading cycles, described by data sets of the form{

{εr − ε0, σ̄r}r=1,...,Nd

}
, (1)

where εr are experimental observations of the global strain ε (hard-device
conditions); ε0 is the permanent strain eventually accumulated during a
previous load history (mechanical preconditioning); σ̄r are the experimen-
tal recordings of the overall stress σ; and Nd is the number of data points.
We look for the best-fit values of the constitutive parameters of model # 2

p =
{{
ki

0, ∆σi, ki
c, ε

a
i , ε

i
c, k

i
h+ ki

h−
}

i=1,...,N−1

}
, (2)

under simple bounds of the form

p ∈ D = [plb
1 , p

ub
1 ]× . . .× [plb

P , p
ub
P ], (3)

where P is the overall number of parameters. We set P = 5N , by prescribing
the ratios ki

h+/k0 and ki
h−/k0. In detail, we fixed ki

h+ = k0 × 10−3 and
ki

h− = k0 × 0.5 × 10−2 for the first cycle of the experiment analyzed in
Section 5.2.1; ki

h+ = ki
h− = k0 × 10−5 for the fourth cycle of the experiment

analyzed in the same Section; and ki
h+ = ki

h− = k0×10−2 for the experiments
analyzed in Section 5.2.2 The fitting performance of a given set of parameters
p was evaluated through the fitting fitness function

f(p) = max
r=1,...,Nd

|σr(p) − σ̄r| (4)

2



which is the maximum-norm of the piecewise continuous residuals σ−σ̄. Here,
σr(p) denotes the numerically predicted overall stress for ε = εr, coinciding
at equilibrium with the stress in each individual spring. The multivariate
minimization problem

min
p∈D

f(p), (5)

is expected to be strongly non-convex (Ogden et al., 2004) and well suited
for genetic algorithms (Schmitt, 2004; El Sayed et al., 2008). We employed
the Breeder Genetic Algorithm (BGA) presented in De Falco et al. (1996)
and successfully used as a parameter identification tool in Fraternali et al.
(2009). We used a population size of 2P individuals; an initial, randomly-
chosen, truncation rate equal to 15%, extended intermediate recombination,
mutation rate in the interval [10%, 50%], and a maximum number of gener-
ations equal to 200. We refer the reader to De Falco et al. (1996) for further
technical details of the employed BGA.

Section 5.2.1. Compression tests on a doubly anchored CNT foam

Tab. 2 illustrates the best fit material parameters obtained for the exper-
iment illustrated in Section 5.2.1 of the paper.

Section 5.2.2. Compression tests on a foamlike CNT film

We fit the ‘symmetric’ formulation of model # 2 (ki
c = ki

0 in each spring)
to the first cycle of the cyclic compression test given in Cao et al. (2005),
employing chains with 3, 5 and 10 mesoscopic springs. The best fit pa-
rameters obtained for this case are given in Tab. 3, and the corresponding
stress-strain plots are shown in Fig. 1. One observes that the matching be-
tween predictions and experimental recordings appreciably increases by pro-
gressively adding mesoscopic springs to the model under consideration (the
fitting fitness function f decreases from 1.586 MPa to 1.462 MPa, by letting
the number of springs increase from 3 to 10). A good matching between
theory and experiments was also observed for what concerns the localization
of the CNT deformation during the buckling (‘plastic’) phase. Fig. 2 shows
selected equilibrium configurations and a deformation animation of the best
fit model with 5 springs. It is worth noting that the succession of the spring
snaps depicted in Fig. 2 qualitatively reproduces the progressive kinking of
the tubes observed during the test, which is clearly described by Figs. 1, 2
and 4A of Cao et al. (2005). The best fit parameters obtained for ‘asym-
metric’ formulation of model # 2, which is presented in Section 5.2.2 of the

3



4 springs, 1. cycle, ε0 = 0, f = 0.491 MPa
spring # ki

0 [MPa] ∆σi/σi
a εi

a εi
c ki

c/k
i
0

3 11.82 −0.82 0.09 0.95 9.06
2 48.89 −0.88 0.05 0.93 8.66
1 86.95 −0.75 0.06 0.61 9.58
0 16.92 −0.79 0.27 0.56 9.77

4 springs, 4. cycle, ε0 = 0.20, numerical (1), f = 0.484 MPa
spring # ki

0 [MPa] ∆σi/σi
a εi

a εi
c ki

c/k
i
0

3 35.93 −0.69 0.03 0.84 92.73
2 10.76 −0.98 0.88 0.88 59.37
1 20.42 −0.86 0.19 0.27 25.93
0 7.16 −0.16 0.02 0.95 96.70

4 springs, 4. cycle, ε0 = 0.20, numerical (2), f = 0.746 MPa
spring # ki

0 [MPa] ∆σi/σi
a εi

a εi
c ki

c/k
i
0

3 76.29 0.00 0.62 0.62 84.16
2 10.76 0.00 0.88 0.88 59.37
1 1.66 0.00 0.73 0.73 76.13
0 2.24 0.00 0.13 0.72 92.55

Table 2: Mechanical properties of ‘asymmetric’ spring models fitting compression tests on
a doubly anchored CNT foam (cf. Section 5.2.1 of the paper).
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paper, are given in Tab. 4.

3 springs, 1. cycle, f = 1.568 MPa
spring # ki

0 [MPa] ∆σi/σi
a εi

a εi
c

2 52.30 −0.78 0.17 0.78
1 52.30 −0.78 0.23 0.88
0 52.30 −0.78 0.27 0.73

5 springs, 1. cycle, f = 1.512 MPa
spring # ki

0 [MPa] ∆σi/σi
a εi

a εi
c

4 45.97 −0.92 0.24 0.78
3 44.55 −0.76 0.23 0.72
2 44.58 −0.78 0.21 0.80
1 44.45 −0.76 0.30 0.84
0 47.76 −0.73 0.25 0.83

10 springs, 1. cycle, f = 1.462 MPa
spring # ki

0 [MPa] ∆σi/σi
a εi

a εi
c

9 46.76 −0.81 0.20 0.86
8 58.04 −0.86 0.58 0.54
7 51.92 −0.80 0.25 0.87
6 48.27 −0.88 0.22 0.87
5 60.76 −0.86 0.21 0.60
4 58.10 −0.72 0.25 0.81
3 53.87 −0.70 0.18 0.80
2 44.27 −0.66 0.25 0.89
1 59.50 −0.64 0.19 0.64
0 59.73 −0.76 0.21 0.88

Table 3: Mechanical properties of ‘symmetric’ spring models fitting results by Cao et al.
(2005).
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5 springs, 1. cycle, ε0 = 0, f = 0.870 MPa
spring # ki

0 [MPa] ∆σi/σi
a εi

a εi
c ki

c/k
i
0

4 39.06 −0.69 0.28 0.86 4.70
3 43.41 −0.65 0.31 0.81 4.71
2 48.48 −0.90 0.21 0.81 3.90
1 38.15 −0.73 0.24 0.76 5.00
0 46.89 −0.77 0.26 0.80 4.33

10 springs, 1. cycle, ε0 = 0, f = 0.808 MPa
spring # ki

0 [MPa] ∆σi/σi
a εi

a εi
c ki

c/k
i
0

9 45.15 −0.70 0.24 0.85 1.85
8 48.16 −0.56 0.30 0.66 5.82
7 39.88 −0.60 0.25 0.72 7.91
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0 43.92 −0.67 0.29 0.83 6.69

5 springs, 1000. cycle, ε0 = 0.14, numerical (1), f = 0.444 MPa
spring # ki

0 [MPa] ∆σi/σi
a εi

a εi
c ki

c/k
i
0

4 8.66 −0.28 0.19 0.90 27.35
3 2.55 −0.27 0.74 0.74 47.35
2 86.24 −0.96 0.59 0.63 49.84
1 57.13 −0.31 0.44 0.60 20.15
0 2.95 −0.71 0.49 0.85 38.13

5 springs, 1000. cycle, ε0 = 0.14, numerical (2), f = 0.926 MPa
spring # ki

0 [MPa] ∆σi/σi
a εi

a εi
c ki

c/k
i
0

4 4.40 0.00 0.37 0.89 45.19
3 54.24 0.00 0.44 0.71 35.32
2 4.62 0.00 0.59 0.63 26.10
1 1.83 0.00 0.87 0.87 32.26
0 11.38 0.00 0.09 0.75 33.84

Table 4: Mechanical properties of ‘asymmetric’ spring models fitting results by Cao et al.
(2005).
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Figure 1: (Fitting of the first cycle of a compression test on a foamlike CNT film to
non-uniform spring models (properties in Tab. 3).
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Figure 2: Selected equilibrium configurations (left) and deformation animation (right) of
the model with five springs described in Tab. 3.
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